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Abstract: Polyfluoroalkyl and perfluoroalkyl substances (PFASs) are distributed ubiquitously in the aquatic environment, which raises
concern for the flora and fauna in hydrosystems. The present critical review focuses on the fate and adverse effects of PFASs in the aquatic
environment. The PFASs are continuously emitted into the environment from point and nonpoint sources such as sewage treatment plants
and atmospheric deposition, respectively. Although concentrations of single substances may be too low to cause adverse effects, their
mixtures can be of significant environmental concern. The production of C8-based PFASs (i.e., perfluorooctane sulfonate [PFOS] and
perfluorooctanoate [PFOA]) is largely phased out; however, the emissions of other PFASs, in particular short-chain PFASs and PFAS
precursors, are increasing. The PFAS precursors can finally degrade to persistent degradation products, which are, in particular,
perfluoroalkane sulfonates (PFSAs) and perfluoroalkyl carboxylates (PFCAs). In the environment, PFSAs and PFCAs are subject to
partitioning processes, whereby short-chain PFSAs and PFCAs are mainly distributed in the water phase, whereas long-chain PFSAs and
PFCAs tend to bind to particles and have a substantial bioaccumulation potential. However, there are fundamental knowledge gaps about
the interactive toxicity of PFAS precursors and their persistent degradation products but also interactions with other natural and
anthropogenic stressors. Moreover, because of the continuous emission of PFASs, further information about their ecotoxicological
potential among multiple generations, species interactions, and mixture toxicity seems fundamental to reliably assess the risks for PFASs
to affect ecosystem structure and function in the aquatic environment. Environ Toxicol Chem 2014;33:1921–1929. # 2014 SETAC
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BACKGROUND

Polyfluoroalkyl and perfluoroalkyl substances (PFASs) have
received global public attention because of their persistence,
bioaccumulation potential, and possible adverse effects on living
organisms [1,2]. In addition, they have the capability for long-
range transport through the atmosphere and water [3,4]. As a
consequence, perfluorooctane sulfonate (PFOS), one of the most
frequently detected PFASs in the environment [5,6], and its
precursors have been added to Annex B of the Stockholm
Convention on Persistent Organic Pollutants list in 2009, which
resulted in a global restriction on its production and use [7]. In
addition, a number of PFASs have been regulated and
voluntarily phased out in many countries across the world [8].
However, PFASs comprise a diverse group of chemicals
with significant economic value; for example, the markets
for stain repellents and for polishes, paints, and coatings are
worth approximately $1000 million and $100 million, respec-
tively [9]. Hence, the utilization of other PFASs has continued
unbroken until the present. The economic importance of PFASs
is further underpinned by their application in numerous
residential, commercial, and industrial applications, such as
surfactants in fluoropolymer production, metal plating, aqueous
film-forming foams (AFFFs), paper, textile, and household
products [7,10].

This broad spectrum of applications, as well as the associated
ubiquity in products used daily, goes along with their continuous
release via point and nonpoint sources into the aquatic

environment. There, PFASs are subjected to various transport,
partitioning, and degradation processes, depending on their
physicochemical properties and environmental conditioning [6].
Moreover, these substances are pervasively detected as complex
mixtures that may adversely affect autotrophic and heterotrophic
food webs. For example, PFOS is very persistent, has a high
bioaccumulation potential [1], and causes acute and chronic
effects at the individual, population, and community lev-
els [11,12]. In this context, the present review focuses on the fate
of PFASs as well as multigenerational effects, multiple stressors,
and impacts of PFASs on aquatic organisms. Moreover, by
evaluating ecotoxicological knowledge in the light of field-
relevant exposure scenarios, fundamental knowledge gaps in the
risk evaluation of PFASs are identified that may stimulate future
research.

TERMINOLOGY AND CLASSIFICATION

This section gives an overview of the terminology and
classification of PFASs as described by Buck et al. [8].
Polyfluoroalkyl and perfluoroalkyl substances are commonly
divided into 3 classes: perfluoroalkyl substances (PerFASs),
polyfluoroalkyl substances (PolyFASs), and fluorinated poly-
mers. In Table 1, PerFASs and PolyFASs are briefly displayed
and exemplified. The PerFASs, such as perfluoroalkane
sulfonates (PFSAs; CnF2nþ1SO3

–), perfluoroalkyl carboxylates
(PFCAs; CnF2nþ1COO

–), perfluoroalkyl phosphonates (PFPAs;
CnF2nþ1[O]P[OH]O

–), perfluoroalkyl sulfonamides (FASAs;
CnF2nþ1SO2NH2), perfluoroalkyl sulfonamidoethanols (FASEs;
CnF2nþ1SO2NHCH2CH2OH), and perfluoroalkyl sulfonamido-
acetic acids (FASAAs; CnF2nþ1SO2NHCH2COOH), have a
fully fluorinated alkyl chain. The PolyFASs have a partly
fluorinated alkyl chain (but containing at least 1 fluorine atom)
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Table 1. Environmentally relevant groups of polyfluoroalkyl and perfluoroalkyl substances (PFASs) in the aquatic environment

Compound groups Acronym Formula Chemical structure Typical PFASsa

Perfluoroalkyl substances
Perfluroalkyl sulfonates PFSAs CnF2nþ1SO3

- n¼ 3–9

Perfluoroalkyl carboxylates PFCAs CnF2nþ1COO
- n¼ 1–17

Perfluoroalkyl phosphonates PFPAs CnF2nþ1(O)P(OH)O
- n¼ 4, 6, 8

Perfluoroalkyl sulfonamides FASAs CnF2nþ1SO2NH2 n¼ 8, R¼H
n¼ 8, R¼CH3

n¼ 8, R¼C2H5

n¼ 4, R¼CH3

Perfluoroalkyl sulfonamidoethanols FASEs CnF2nþ1SO2NHCH2CH2OH n¼ 8, R¼CH3

n¼ 8, R¼C2H5

n¼ 4, R¼CH3

Perfluoroalkyl sulfonamidoacetic acids FASAAs CnF2nþ1SO2NHCH2COOH n¼ 8, R¼H
n¼ 8, R¼CH3

n¼ 8, R¼C2H5

Polyfluoroalkyl substances
Polyfluoroalkyl phosphoric acid esters PAPs (O)P(OH)3–x (OCH2CH2CnF2nþ1)x m¼ 1, n¼ 2,

x:2 monoPAP
m¼ 2, n¼ 1,
x:2 diPAP

n:2 Fluorotelomer alcohols n:2 FTOHs CnF2nþ1CH2CH2OH n¼ 4, 6, 8, 10

x:2 Fluorotelomer sulfonates x:2 FTSAs CnF2nþ1CH2CH2SO3
- n¼ 4, 6, 8, 10

n:2 Fluorotelomer carboxylates x:2 FTCA CnF2nþ1CH2COO
- n¼ 4, 6, 8, 10

n:2 Fluorotelomer unsaturated carboxylates x:2 FTUCA Cn-1F2n-1CF¼CHCOO- n¼ 3, 5, 7, 9

n:2 Fluorotelomer saturated aldehydes n:2 FTALs CnF2nþ1CH2CHO n¼ 4, 6, 8, 10

n:2 Fluorotelomer unsaturated aldehydes n:2 FTUALs Cn-1F2n-1CF¼CHCHO n¼ 3, 5, 7, 9

aThe abbreviations n, m, and R represent different chemical groups in the chemical structure.
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and include such substances as polyfluoroalkyl phosphoric acid
esters (PAPs; [O]P[OH]3-x[OCH2CH2CnF2nþ1]x), fluorotelomer
alcohols (FTOHs; CnF2nþ1CH2CH2OH), x:2 fluorotelomer
sulfonates (FTSAs; CnF2nþ1CH2CH2SO3

–), x:2 fluorotelomer
carboxylates (FTCA; CnF2nþ1CH2COO

–), x:2 fluorotelomer
unsaturated carboxylates (FTUCA; Cn-1F2n-1CF¼CHCOO–),
n:2 fluorotelomer saturated aldehydes (FTALs; CnF2nþ1CH2

CHO), and n:2 fluorotelomer unsaturated aldehydes (FTUALs;
Cn-1F2n-1CF¼CHCHO) (Table 1). The class of fluorinated
polymers includes a large variety of chemicals and also is
divided into 3 subclasses: fluoropolymers, perfluoropolyethers,
and side-chain fluorinated polymers [8]. Long-chain PFASs are
referred to PFCAs and PFSAs with a perfluorocarbon chain
length of �C7 and �C6, respectively (including their precursor
compounds). Polyfluoroalkyl and perfluoroalkyl substances
have unique physicochemical properties that vary depending
on the chain length and functional group [12–14].

SOURCES

Polyfluoroalkyl and perfluoroalkyl substances are released
into the aquatic environment throughout their whole life cycle
(i.e., during their production, along the supply chains, product
use, and disposal of industrial and consumer products). Direct
emission sources of PFASs are defined as emissions throughout
their product cycle, and indirect emission sources are defined as
emissions from transformation of their precursors [8]. The total
(directþ indirect) historic emissions of perfluorooctylsulfonyl
fluoride (POSF)-based substances (i.e., PFOS and its precur-
sors), the major precursor for several PFASs, are estimated to be
6800 tons to 45 300 tons (1972–2002), whereas total emissions
of PFCAs range between 3200 tons and 7300 tons (1951–
2004) [7,10]. The majority of these emissions (>95%) are
directly released into the aquatic environment, whereas
emissions through the atmosphere are considered to be rather
small (<5%) [7,10]. However, a reliable quantitative assessment
of their production, direct and indirect emission, and environ-
mental inventory is lacking.

The emissions of POSF-based fluorochemicals (C8 fluoro-
carbon) decreased after the voluntarily phase-out of POSF by the
3MCompany in 2002 [7] and other regulations [15]. In addition,
the emissions of PFOA are expected to decrease after institution
of the US Environmental Protection Agency PFOA Stewardship
program, under which the 8 major companies of the
perfluoropolymer industry committed to eliminate emissions
and product content of PFOA and related chemicals by
2015 [16]. Although POSF-based production has continued in
China [17], production of these PFASs has generally shifted to
other substances of this group. Currently, short-chain PFASs
such as perfluorobutane sulfonate and perfluorobutanoate, and
PFAS precursors that can finally degrade to persistent
degradation products (e.g., PFCAs and PFSAs) are frequently
applied [18,19]. However, the release of long-chain PFASs into
the aquatic environment will continue in the future from
degradation of PFAS precursors, or from historical products still
in use or deposed, and they can be remobilized into the water
phase, for example, from soil, sediment, and ice [6]. In addition,
the emissions of other PFASs, in particular short-chain PFASs
and PFAS precursors are increasing.

Irrespective of these shortcomings in our scientific knowl-
edge, PFASs are introduced through both point and nonpoint
(diffuse) sources. Point sources of PFASs include, for example,
landfills, manufacturing plants, and application of PFAS-
containing products at a concentrated area (e.g., application of

AFFFs) [20–23]. Industrial and municipal sewage treatment
plants were identified as major contributors [20–22]. The total
discharge of PFASs into the aquatic environment ranged
between 10 g d�1 [21,22] and 10 000 g d�1 [18], depending on
the water usage in the community connected to the sewage
treatment plant. These documented releases of PFASs from
conventional sewage treatment plants may be explained by the
ineffectiveness of implemented technologies to remove micro-
pollutants in general [24]. In addition, PFAS precursors can be
degraded and even increase PFCA and PFSA loads released into
the receiving aquatic ecosystem [20]. Advanced water treatment
techniques such as activated carbon and nanofiltration may be
suitable amendments to current techniques to help reduce PFAS
concentrations [25,26]. As suggested by Ahrens [6], among
other authors, the application of AFFFs can be a PFAS source of
serious local concern causing massive concentrations in adjacent
water bodies but also soils [27]. However, leaching of PFASs
from soils to ground and surface water bodies is not fully
understood and requires further investigation to allow for a
reliable judgment of the contribution of such a source to the
overall exposure [28,29].

An important nonpoint source for PFASs is wet and dry
atmospheric deposition, while the original sources are
manufacturing plants, sewage treatment plants, landfills, and
households [30–32]. Volatile PFASs (e.g., FTOHs, FASAs,
FASEs) have been detected in outdoor air samples, even in very
remote regions [4,33,34].Volatile PFASs enter the atmosphere,
where they can degrade, form intermediates during atmospheric
oxidation, or transform into more persistent PFASs such as
PFSAs and PFCAs, which may finally end up in the aquatic
environment [35]. Moreover the metabolic transformation of
PFAS precursors (e.g., PAPs, FTCAs, FTUCAs, FTSAs,
FASAAs) can be an important source of PFSAs and PFCAs
in the aquatic environment. Another important nonpoint source
is runoff from contaminated land or streets as a result of biosolid
application or wet and dry atmospheric deposition [36–38].

The described variety of point and nonpoint sources releasing
PFASs into aquatic ecosystems reflects the broad spectrum of
specific substances with their inherent environmental properties
as well as their application range. This pattern indicates, in
addition, a continuous exposure of the aquatic ecosystems to
complex mixtures of PFASs.

ENVIRONMENTAL FATE

The environmental fate of PFASs describes their transport,
partitioning, and transformation processes after their release into
the environment (Figure 1). During or after the production and
usage of PFAS-containing products, PFASs can, as detailed in
the Sources section, be released into the aquatic environment

Figure 1. Pathways of polyfluoroalkyl and perfluoroalkyl substances
(PFASs) into the environment and their fate. Adapted from Ahrens [6].
STP¼ sewage treatment plant.
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from point and nonpoint sources. The PFAS precursors are
typically transported via the atmosphere because of their volatile
to semivolatile properties and subsequently can be degraded to,
for example, PFSAs and PFCAs [35,39]. The PFAS precursors
(e.g., FTOH, FASAs, FASEs, PAPs) are subject to a variety
transformation pathways in the atmosphere or under aerobic
and anaerobic conditions in other environmental compart-
ments [19,39]. Moreover, intermediate degradation products
(i.e., FTUALs, FTALs, FTUCAs, FTCAs) formed during both
atmospheric transformation and biotransformation are very
reactive [35,40] and have shown acute and chronic toxicity to
aquatic invertebrates and green algae [41–43]. The transport
processes of these final degradation products proceed mainly in
the water phase but can also occur via seaspray or gas-phase and
particle-bound transport in the atmosphere [3,44,45]. For remote
regions such as the Arctic Ocean, it was estimated that the long-
range transport of PFCAs is 1 to 2 orders of magnitude higher in
the water phase compared with transport in the atmo-
sphere [4,46,47]. However, it is still under debate whether the
atmospheric transport or transport via the water phase is the
dominant transport pathway for ionizable PFASs, whereas for
neutral, volatile PFASs, gas-phase transport is likely to be the
dominant pathway to remote regions [6].

The environmental cycling of PFASs depends on environ-
mental conditions (e.g., organic carbon content, temperature,
salinity, concentration of atmospheric oxidants) and the
physicochemical properties inherent in the substance. The latter
is mainly determined by the PFASs’ chain length and their
functional groups [1,48]. For example, short-chain PFASs are
dominantly hydrophilic and are generally more mobile in
hydrosystems, whereas long-chain PFASs have a higher
hydrophobicity and hence tend to bind to particles and have a
substantial bioaccumulation potential [1,49]. Among the
environmental media, the largest global reservoirs of PFASs
are proposed to be oceans and sediment [47].

EXPOSURE, BIOACCUMULATION, AND EFFECTS IN THE
AQUATIC ECOSYSTEM

PFASs have a high binding affinity to serum albumin and
fatty acid binding proteins, which results in a tissue-dependent
distribution in biota [1,50–52]. For example, the tissue
distribution for PFASs in various freshwater fish species from
Beijing, China decreased from blood over liver and brain to
muscle [52]. Moreover, the bioaccumulation potential of PFASs

varies among individual organisms and species and also depends
on the physicochemical properties of PFASs, such as branched
or linear chain, chain length, and functional group [1,48,53,54].
It also has been shown that the elimination rate depends on the
PFAS structure. For example, branched isomers are eliminated
faster than linear isomers [55]. In addition, the accumulation
and elimination of PFASs depends on the species, gender, and
reproductive status [56,57].

PFASs are ubiquitously present in the environment, even in
pristine regions, and can possibly biomagnify along the food
chain [2,5,58–64]. In biota, PFOS (C8 fluorocarbon) is typically
the dominant PFAS, and the PFOS concentration increases along
the food chain, showing its high bioaccumulation potential. In
contrast, perfluorooctanoate (PFOA; C7 fluorocarbon) has a low
bioaccumulation potential and is relatively similar among
species from different trophic levels. For example, the maximum
concentrations of PFOS and PFOA in invertebrates [59–
61,65,66] are in a similar range, whereas in fish [60,61,65–
68], reptiles [69–71], birds [59–61,68,72,73], and mam-
mals [60,63,67,68,71,72,74,75], the maximum PFOS concen-
tration is up to 3 orders of magnitude higher compared
with PFOA (Figure 2). The lower bioaccumulation potential
of PFOA may be driven by the shorter perfluorocarbon chain
length and different functional group compared with PFOS [1].
In recent years, PFSA concentrations showed decreasing
trends in biota because of the phase-out of PFOS in
2002 [7,58,76]. However, the concentrations of other PFASs,
such as long-chain PFCAs, show no clear trend and are even
increasing depending on the compound, trophic level, and
geographical location [62].

Hence, PFASs can be considered as persistent in the
environment as a whole, whereas PFAS precursors are
degradable to PFCAs and PFSAs [19]. The PFASs are
permanently introduced into aquatic ecosystems, which can
result in a continuous exposure of those compounds for
organisms located downstream of the discharges. These insights
indicate a long-term (chronic) exposure of species in aquatic
ecosystems suffering from wastewater discharge and other point
and nonpoint sources of PFASs. In contrast to the large number
of studies investigating acute and chronic effects of PFASs,
which were reviewed by Giesy et al. [11] and more recently by
Ding and Peijnenburg [12], only a very few studies address
implications over multiple generations. Drottar and
Krueger [77,78] assessed the survival of juveniles (over 48 h
and 96 h) released from PFOS-exposed Daphnia magna

Figure 2. Average perfluorooctane sulfonate (PFOS; black bars) and perfluorooctane sulfonate (PFOA; gray bars) concentrations in wildlife from the aquatic
environment including invertebrates (whole body) [59–61,65,66], fish (liver) [60,61,65–68], reptiles (plasma) [69–71], birds (liver) [59–61,68,72,73], and
mammals (liver) [60,67,68,71,72,63,74,75].
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(freshwater Cladocera) and Mysidopsis bahia (marine Mysida)
in medium amended with the same PFOS concentration (mg L�1

to mg L�1 range) as the adults had been exposed to. Following
this short-term exposure to PFOS, the F1 generation of both
Daphnia and Mysidopsis exhibited no indication of a shift in
sensitivity. In contrast to these studies with invertebrates,
Japanese medaka (Oryzias latipes) exposed to either PFOA or
PFOS (in the mg L�1 range) released offspring that, even if
cultured after hatching in control (PFAS-free) medium, showed
higher mortality but also histopathological alterations compared
with the offspring released from control animals. The effect size
was even more pronounced if the exposure to PFOA or PFOS,
respectively, is continued in the F1 generation [79]. These data
suggest that effects on the next generation can already be
observed if a species is exposed to PFASs for only 1 generation.
However, and as detailed above, Polyfluoroalkyl and perfluor-
oalkyl substances are continuously introduced into aquatic
environments and hence more than 1 generation may suffer from
PFAS exposure, which requires an assessment of potential
implications over multiple generations—especially for genera
with a rather short generation time, such as Daphnia or
Chironomus. The latter may be of particular interest because, for
example, C. tentans survival, emergence, and growth was
inhibited by 50% at a concentration slightly below 100mg L�1

of PFOS [80], which is 3 orders of magnitude below
concentrations causing effects in daphnids, macrophytes, and
algae (reviewed in Ding and Peijnenburg [12]). Multigeneration
experiments should also consider whether effects persist even
under control (PFAS-free) conditions, simulating the migration
of species to nearby uncontaminated aquatic ecosystems.
Overall, adverse effects of PFASs need to be evaluated
considering a continuous exposure at environmentally relevant
concentrations in the aquatic environment.

IMPACT OF MULTIPLE STRESSORS

In addition to the ubiquitous presence and persistence of
PFASs, environmental chemistry research has documented
complex PFAS mixtures in surface water bodies [6]. In this
context, however, more detailed ecotoxicological knowledge
needs to be developed. Wang et al. [13] have suggested that
mixtures of PFASs act additively on Photobacterium phosphor-
eum. However, mixtures of PFOA and PFOS exhibited complex
toxic interactions on Danio rerio embryos, which were not
predictable with either concentration addition (similar mode of
action [81]) or independent action (dissimilar modes of
action [82]) models [83]. Nonetheless, the studies of Liu
et al. [84–86] indicated an increase in ecotoxicity with increasing
molar ratio of PFOS in the investigated binary mixture.
Moreover, the gene expression pattern of Gobiocypris rarus
showed that a particular set of genes is expressed only if
exposure to PFAS mixtures has taken place, whereas none of the
single PFAS exposure scenarios resulted in a comparable
pattern [87]. These studies suggest that mixtures of PFASs can
cause unpredictable, species-specific effects. However, a
systematic assessment of the potential implications of PFAS
mixtures is required to understand whether and how these
compounds might jointly affect the integrity of aquatic
ecosystems.

Moreover, PFASs are usually detected in combination with
other organic and inorganic chemical stressors with which they
may interact. Studies report antagonistic, synergistic, or no
interactions between PFOS (only one study also assessed PFOA)
and metals [88,89], chlorinated compounds [90,91], and other

organic compounds [90,92,93]. Liu et al. [92] linked the
observed synergistic interaction between PFOS and pentachlo-
rophenol, atrazine, and diuron in binary mixtures with their
hydrophobicity, allowing for an uptake in algal cells. However,
deeper insights supporting a prediction of potential interactions
among PFASs and other natural or anthropogenic stressors are
lacking, while the co-occurrence of these stressors in the field
is certainly given [94]. This general lack of knowledge of
interactions of other PFASs—besides PFOS and PFOA—with
other natural and chemical stressors is particularly alarming
because a variety of replacement compounds (e.g., short-chain
PFSAs and PFCAs, and PAPS) are released into the aquatic
environment [18,95].

COMPLEXITY IN SPECIES INTERACTION AND ECOSYSTEM
FUNCTION

This section focuses on trophic interactions in the aquatic
ecosystem, with special emphasis on autotrophic and heterotro-
phic food webs. In aquatic ecosystems, algae—and their
photosynthetically generated biomass—are considered as the
basis of autotrophic food webs. However, PFASs seem to have
the potential to affect the functioning of these organisms’ cell
membranes, which is more pronounced with increasing PFAS
chain length and lower proportion of indigestible structural
components, such as cellulose, in the algal cell wall [96]. These
processes may have implications in the food quality for algae-
consuming animals, such as filtering and grazing invertebrates
(Figure 3). Hence, it might be assumed that implications for
reproduction of the standard test species D. magna [97] (among
others) or the development of zooplankton communities [98,99]
may be driven by not only direct exposure but also indirect
exposure—via an altered nutritious quality of the ingested algae
(Figure 3; [100]). This question can be addressed by applying
simplified Dynamic Energy Budget models (DEBTox) [101].
This tool allows for an estimation of energy assimilation and
expenditure processes (i.e., maintenance, growth, reproduction)
that may be affected by a given stressor and hence would
allow us to link the observed effects with relevant effect
pathways [101].

In contrast to the autotrophic webs, heterotrophic food webs
rely on the utilization of dead organic matter such as leaf litter. In
this context, leaf litter decomposition is a fundamental
ecosystem function, which fuels local and downstream aquatic
communities [102]. As a first step in this process, micro-
organisms, especially bacteria and fungi, alter the physical and
chemical structure of the leaf materials (conditioning), which
increases their nutritious quality for leaf-shredding inverte-
brates [103]. The conditioning process, however, may be altered
in the presence of PFASs by affecting (among other factors) leaf-
associated bacteria, and any implications for fungi cannot be
excluded, given the lack of data. Such effects may be
hypothesized given the potential of PFASs for impacting
the integrity of cell membranes (median effective concentrations
have ranged from 0.28mM to 12.8mM for PFCAs) [96] and
causing substantial cellular oxidative stress [104] (Figure 3).
Such implications may alter the interaction between bacteria and
fungi on leaves, as both groups are reported to depend on the
activity of the other (synergistic interaction [105]) but can also
be hampered (antagonistic interaction [106]) during condition-
ing. This in turn affects the nutritious value of the leaf material
for leaf-shredding organisms, as displayed for various chemical
stressors [107,108], leading to physiological implications in the
shredders and shifts in the breakdown of leaves into finer
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particles [109]. To the best of the authors’ knowledge,
no information regarding indirect (food quality–related)
effect pathways of PFASs is available for autotrophic and
heterotrophic food webs, despite the substances’ continuous
presence in the aquatic ecosystem (Figure 3). In addition,
potential implications in terms of the consumption of
contaminated food (e.g., algae or detritus) have not yet been
properly considered in ecotoxicological investigations in spite of
the potential importance of this issue, particularly for highly
sorptive compounds [110]. Moreover, predator–prey interac-
tions have not yet been addressed, although they can help predict
potential effects among trophic levels in complex food
webs [111,112].

CONCLUSIONS

Polyfluoroalkyl and perfluoroalkyl substances are subject to
geochemical cycling processes in the aquatic environment,
including indirect and direct emissions, transport, partitioning,
and transformation processes. A better understanding of the
influence of environmental conditions and the physicochemical
properties of PFASs on these complex processes is needed.
Although there is a large quantity of data in terms of potential
acute and chronic effects of PFSAs and PFCAs, which allow us

to conclude that the ecotoxicity of those compounds increases
with the perfluorocarbon chain length, some fundamental
challenges remain largely unsolved. Polyfluoroalkyl and
perfluoroalkyl substances are continuously introduced into
aquatic ecosystems and are ubiquitously present in complex
mixtures. However, little is known about the interactive toxicity
of PFAS mixtures at environmentally relevant concentrations
or about interactions with other natural and anthropogenic
stressors. In addition, because exposure to PFASs is continuous,
further information about their ecotoxicological potential in
multiple generations, species interactions, and energy transfer
within and across ecosystem boundaries may help in judging the
risks for PFASs to affect ecosystem structure (e.g., biodiversity)
and function in the aquatic environment.
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